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I.  INTRODUCTION 

Sabots are employed to reduce the sectional density of projectiles 
permitting the attainment of high in-bore accelerations. Once free of the 
gun, the sabots must be discarded in order to decrease the drag of the round. 
It has been demonstrated [1-4] that aerodynamic interference during this 
process can adversely affect the projectile trajectory and increase on-target 
dispersion. While the flow field associated with symmetric sabot discard 
geometries has been investigated [5-8] , there is no body of information des- 
cribing the asymmetric case. The report discusses the results of an 
experimental program to obtain preliminary data on asymmetric discard. 

Both spin and fin stabilized projectiles are launched with the aid of 
sabots. Currently, finners are of interest since they represent the most 
practical means of stabilizing the long rod penetrators which have 
demonstrated effectiveness against armor. In order to be fielded, a design 
must achieve a high degree of precision implying the need to minimize 
round-to-round dispersion. In-bore dynamics dominate the launch process. The 
lateral motions of the gun tube and of sabot/projectile relative to the gun 
tube provide  the  initial  dynamics  to  the  exiting round.   Of the post 

1. H. Conn3 "The Influence of Sabot Separation on the Yawing Motion of a 
Cone," Defense Research Establishment, Valcartier, Canada, TN 1849/70, 
June  1970. 

2. W.     D.     Glauz,   "Estimation  of Forces  on a  Flechette  Resulting from a 
Shock Wave,"  Midwest  Research  Institute,   Kansas  City,   MO,  R3451-E, 
May  1971. 

3. E.     M.     Schmidt  and D.     D.     Shear,   "Aerodynamic Interference  During Sabot 
Discard," AIAA JSR,   Vol.     15,  No.     3,  May-June  1978,  pp  162-167. 
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8. E.     M.     Schmidt,   "Wind-Tunnel  Measurements  of Sabot-Discard Aerodynamics," 
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separation disturbances, aerodynamic interference during sabot discard has 
been shown to be most significant [4]. The controlling asymmetries may be 
grouped into two broad categories: first, cases where the projectile yaws 
with respect to the sabot components and, second, cases where the sabot 
discard geometry is asymmetric with respect to the projectile. Either 
favorable or unfavorable interference may be observed. For example, a 
projectile launched with a high initial yaw rate may have this rate damped 
during the discard process. Alternatively, asymmetries in the sabot discard 
have been shown to induce significant projectile yaw rates. 

A typical fin-stabilized projectile and its associated sabots are shown in 
Figure (1). Generally, the sabot is segmented into either three or four 
components. As these separate, the flow about the projectile undergoes 
dramatic changes as illustrated in Figures 2a-2d. This sequence of spark 
shadowgraphs covers the conditions from penetration of the muzzle blast 
through entry into unconstrained free flight. Near the muzzle (Figure 2a), 
the strong confinement provided by the tightly grouped sabot components causes 
the boundary layer on the projectile to separate at the conical tip. Glotz 
[9] has conducted wind tunnel tests showing that the shock structure on the 
tip is not necessarily stable during this period and that flow oscillations, 
similar to those observed on spike nosed bodies, are possible. As the 
components open, the separation bubble on the nose collapses (Figure 2b); 
however, intersection of the sabot shocks with the projectile results in 
separation on the cylindrical section. A relatively strong shock is 
associated with this separated flow. Additionally, asymmetry in the 
separation is noticed in comparing the upper and lower surfaces. Further 
lateral motion of the sabot components weakens the strength of the shocks 
impinging upon the projectile (Figure 2c). In this case, while boundary layer 
separation is evident, the associated compression is rather weak. Finally, 
the components move away from the projectile and interactions cease (Figure 
2d) . 

Glauz [2] considers the interference between a single sabot component and 
a fin-stabilized projectile. He notes that the impingement and reflection of 
the sabot shock wave off the projectile is complicated even if only inviscid 
flow is considered (Figure 3). The intersection of the shock and the 
cylindrical section of the projectile is curved. On the upper surface, the 
shock deflects the flow directly onto the body; while, on the 90-degree 
lateral surface of the cylinder, a glancing intersection occurs. Thus, the 
shock would reflect from the upper surface (either a regular or Mach stem 
reflection is possible depending upon local Mach number and incidence angle) 
but pass the lateral surface relatively intact. On the underside, the shock 
would tend to deflect the flow away from the surface, which could result in 
cross flow separation. It would be expected that the pressure distribution 
would have a maximum on the upper surface  and  decay  around  the  perimeter. 

9--    ff. Glotz,   "Investigation of the Stability of Flow during the Sabot 
Discard Vrooese," Proceedings of the 6th.International Symposium on 
Ballistics,  American Defense Preparedness Association, Arlington,   VA, 
October 1981. 
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Glauz notes that the presence of viscous effects results in the possibility of 
three dimensional, shock-boundary layer interactions where separated flow and 
strong cross flows could influence the pressure distribution on the body. 
While noting the presence of these factors, Glauz analyzes the interaction by 
assuming that the sabot shock is a simple, planar oblique shock and treats the 
projectile using potential flow theory. His results show that the fins 
dominate as a source of lateral loads. 

Siegelman and Crimi [5,6] develop an approximate model of the flow about 
the projectile and symmetrically discarding sabot components. The analysis is 
based upon wind tunnel measurements of the pressure distributions on these 
bodies [8]. The sabot is approximated as an axially symmetric body 
(sphere-cylinder). The flow field is computed with a blunt body code [10] and 
used to determine the intersection of the sabot shock with the projectile 
surface. The pressure level on the surface is determined by assuming a 
locally two-dimensional inviscid reflection process. Viscous effects are 
included using correlations based upon measured interactions between shock 
waves and turbulent boundary layers. No variation in pressure in the 
azimuthal direction is addressed. Siegelman, et al [7] use this model of 
interference aerodynamics to define an interaction parameter which quantifies 
the magnitude of sabot discard perturbation. 

In order to better define these disturbances, data are required which 
examine the actual flow associated with asymmetric discard. This report 
presents the results of a study of the flow associated with two categories of 
asymmetric discard: a single sabot component moving laterally away from a 
projectile, and three sabot components, one of which is moved with respect to 
the remaining stationary components. The data are used to examine the zones of 
influence of sabot flowfields, the validity of approximate models, and to 
suggest possible improvements to these models. Additionally, a sabot discard 
strategy to minimize aerodynamic interference is suggested and tested in range 
firings. 

II.  MODEL DESIGN AND TEST PROCEDURE 

The pressure distributions on models of a projectile and sabot component 
were measured in the Hypersonic Leg of the NASA Langley Unitary Plan Facility. 
The projectile was mounted on a sting extending from a window blank, while the 
sabot was mounted on the main trapeze of the wind tunnel. Three configura- 
tions were tested: the projectile and a single sabot component; the 
projectile and three sabot components, one of which is moved relative to the 
others (Figure 4a); and the projectile with one component and a 120-degree 
splitter plate (Figure 4b).  The latter data represent the baseline, symmetric 

10.   G.     Moretti  and M.     Abbett,   "A  Time-Dependent  Computational  Method for 
Blunt  Body  Flows," AIAA J,   Vol.     4,  No.     12,  December  1966,  pp    2136-2141. 



discard configuration and have been previously reported [8]. 

The projectile (Fiqure 5) is a stainless steel cone cylinder having a 
diameter of 50.8inm, a length-to-diameter ratio of 10.5, and a 30-degree total 
included angle conical nose. Fins were not installed on the models tested. 
Fifty static pressure orifices are positioned on the surface between the 
120-degree planes of symmetry. The sabot is brass and has cylindrical inner 
and outer surfaces of radii 25.4 and 76.2mm, respectively. The leading edge 
of the sabot has a 40-degree chamfer. Fifty pressure orifices are located on 
the surfaces facing the projectile. Pressures were measured by Scani-valve 
transducers external to the tunnel. 

The splitter plates are fabricated from 6.35mm thick stainless steel 
plates having dimensions of 0.41m x 0.44m. The leading edges are chamfered at 
a 15-degree angle. No pressure orifices are located on the plates. The 
plates are intended to provide reflecting surfaces at natural symmetry planes 
in the flow field. In this manner, the requirement to actuate three sabot 
components simultaneously is avoided, and the symmetric discard geometry is 
easily duplicated. Unfortunately, the boundary layers on these plates and at 
the projectile-plate corners cause degradation of the data due to 
shock-boundary layer interactions [8] . 

The static sabot components (Figure 4a) are fabricated from brass to the 
identical geometry of the actuated component; however, no instrumentation is 
included. The two static sabot components are mounted at zero angle of attack 
and at a separation distance of 3.81cm from the surface of the projectile. 
This configuration was designed to provide a validation of the splitter plate 
technique at a predetermined geometry [8]• The geometry was selected since 
preliminary computations indicated that the area between sabot components was 
sufficient to pass the entry mass flow. In the present study, the 
configuration provides a source to test the influence of discard asymmetry 
where one sabot component is free to move relative to the others. 

The size of the 4x4 foot test section permitted the sabot component to be 
moved relative to the projectile over an angular range of 0-18 degrees in 
pitch and laterally from 3.2 to 114 mm. This range simulated a significant 
portion of the region of interest. Tests were conducted at a Mach number of 
4.5,which is representative of flight Mach numbers. A comparison of flight 
and test conditions is given in Table 1. Due to wind tunnel operation limits, 
the flight conditions could not be duplicated in the tests. The heat transfer 
characteristics were not of interest in this experiment; therefore, 
simulation of stagnation temperature is not a serious drawback. However, as 
previously noted [8] viscous interactions are observed in the experimental 
results, and a closer duplication in Reynolds Number would have been 
worthwhile. 

10 



TABLE 1.  FLIGHT AND TEST CONDITIONS 

PARAMETER WIND 
TUNNEL 

FREE 
FLIGHT 

M 4.5 4.5 

RE   (1/M) 6.6   x   106 89.X106 

T   (DECK) 353. 1487. 

P (N/M ) 2.45 x 105 2.93 x 107 

The data describing pressure distribution on the sabot component are not 
considered here. Only the pressure distribution on the projectile will be 
considered in detail. Various configurations are examined to define the 
interactions between the sabot component flow fields and the projectile. The 
data acquired with the splitter plates define the basic flow field for 
symmetric discard. The results with the single sabot component provide 
information on one category of asymmetric interaction and, when compared with 
the splitter plate data, give an indication of the extent of mutual 
reinforcement between adjacent components. Finally, the measurements taken 
with three sabot components in place are used to examine both symmetric and 
asymmetric properties. 

III.  TEST RESULTS 

The features of the projectile surface pressure distribution during the 
interaction phase of sabot discard are shown in Figure 6. The three sabot 
configurations, i.e., single sabot, three sabots, and the sabot with splitter 
plates on the projectile, are compared for the geometry designed as a symmetry 
check case. The three pressure profiles are taken along the plane of symmetry 
and clearly show the arrival and reflection of the sabot shock wave. The 
pressure peaks occur within a body radius for each case. (It should be noted 
that due to the interval between pressure orifices, the peaks could not be 
located exactly.) The peak values are similar for the single and triple sabot 
cases and slightly lower with the splitter plates. The pressure level ahead 
of the shock intersection becomes progressively greater as the effective 
obstruction to the flow increases. For the single sabot component, the 
pressure ahead of the intersection approaches the undisturbed level; i.e., the 
pressure ratio equals one. With three components in place, mutual 
reinforcement of the impinging shocks apparently separates the boundary layer 
completely around the  periphery of  the body resulting in a characteristic 
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pressure plateau. With splitter plates, this interaction is even more 
pronounced. Downstream of the intersection, the pressures rapidly decay as 
the corner expansion from the sabot arrives at the surface. 

The influence of mutual reinforcement from adjacent sabot components is 
illustrated by Figure 7. This plot presents the variation in projectile 
centerline pressure with forward displacement of the free sabot in the three 
sabot arrangement. The static sabot components remain at a fixed axial 
location relative to the projectile. It is noted that the pressure pulse 
moves forward with the component and only relatively minor changes are 
observed. This indicates that, as expected, the incident shock from the 
facing sabot component dominates the surface pressure distribution on the 
projectile. The glancing shocks from adjacent components do not significantly 
influence or reinforce the primary interaction. 

Further emphasis of this point is obtained by comparing the azimuthal 
pressure distributions for the geometry of the symmetry check case (Figures 
8a-8c). For azimuthal angle of 0, 30, and 45 degrees, the pressure 
distributions for the single and triple sabot component cases are essentially 
identical. The most significant difference is observed in the region of the 
pressure plateau forward of the shock intersection. It is noteworthy that the 
level of the pressure in this region is roughly constant both in the axial and 
azimuthal directions. As the azimuth angle increases, the peak pressure 
decreases significantly reflecting the change in the local flow deflection 
angle around the periphery of the cylinder. Again, the similarity between the 
pressure profiles for the single asymmetric sabot case and the symmetric, 
triple configuration is taken to indicate that mutual reinforcement by 
adjacent sabot components is not significant. 

During discard, the sabot components pitch to positive angles of attack 
and move laterally away from the projectile. Pressure distributions 
representative of the trends due to this motion are presented for the sabot 
displacing laterally while at zero and ten degree angles of attack in Figures 
9 and 10, respectively. Included in the figures are profiles for the 
single sabot and splitter plate cases. As the sabot moves away from the 
projectile, the peak pressure decays and the location of the peak displaces 
aft. This behavior is obviously expected as the source of disturbance becomes 
more distant. The results with the splitter plates and the single sabot 
component are in good qualitative agreement and at the more distant 
separations overlap. The effect of angle of attack is to displace the leading 
edge of the sabot away from the projectile surface, bringing about decreased 
peak pressure and aft motion of the shock impingement. 

The variation in location and magnitude of the peak pressure with sabot 
motion is summarized for the two test arrangements in Figures 11a and lib. 
The predictions of the approximate model of Siegelman and Crimi [5] are 
included. The model predicts the correct trends in both the impingement 
location and pressure level as the sabot position changes; however, 
quantitative agreement is lacking and certain features of the model are not 
observed in the experiment. In particular, the transition from Mach to 
regular reflection as indicated by the discontinuities in the predicted 
pressure variations is not seen.   To  improve  the  prediction,  a  different 
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treatment of the sabot and projectile flow fields is attempted. 

IV.  FLOW FIELD MODEL 

The primary characteristic of the experimental projectile pressure 
distributions is the large pressure pulse due to impingement of the sabot 
component bow shock (Figure 6). Immediately following the pressure rise is a 
sudden drop-off in pressure. This pressure decay is caused by the expansion 
generated at the sabot component corner reaching the projectile surface. As 
an example consider a generic 2-D sabot component with a wedge angle of 38 
degrees flying at zero angle of attack at Mach 4.5. The wave pattern 
generated by a 2-D shock expansion is given in Figure 12a. The pressure 
distribution on a plane wall four calibers from the sabot component is given 
in Figure 12b. Clearly the shape of the pressure distribution obtained is 
identical to those exhibited by the experimental data. The fact that the 
actual flow field is 3-D and highly interactive only alters the pulse peak 
pressure level.  Naturally, viscosity tends to spread the pulse width. 

The above example provides an explanation of the shape of the pressure 
distribution on the projectile,* however, an attempt will now be made at a more 
realistic solution. Consider a single 2-D sabot component at an angle of 
attack flying next to an axisymmetric projectile. The projection in the plane 
bisecting both the sabot component and the projectile is shown in Figure 5. 
In order to predict the sabot bow shock-projectile shock interaction and the 
resulting projectile pressure distribution, approximate shock shapes for both 
bodies are needed. The projectile shock shape is generated by solving for the 
projectile flow field by the method of characteristics. The sabot behaves 
like a blunt body so a shock layer approach which solves the integral form of 
the continuity equation for the stand-off distance is used. The intersection 
point of the sabot bow shock and the projectile shock is thus determined and a 
locally 2-D shock expansion is utilized to compute the impact location of the 
sabot bow shock on the projectile surface. 

The following method generates the sabot shock shape. In the coordinate 
system given in Figure 13 the mass entering the shock layer from the 
freestream is given by: 

m = p V h (la) 

h = x sin(40o + aj+Asin[(t>-aJ (lb) 

h=x    sin(40o+a)+(x-x     j  sin(aj+Asin(4)-a) ( ic) 
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The mass leaving the layer at any given "x" station is: 

o 
m 

1.0 A „ 
p u A /^  P u d3 (2a) s s    o 

B = I  p = P/Ps  u = u/us (2b) 

Equating Equations (la) and (2a) results in: 

A = h/p u  /  p u d3 (3) 
S  S   0 

In order to obtain a value of the standoff distance at any "x" location an a 
priori knowledge of the density and velocity profiles is assumed. For a first 
approximation, a constant density shock layer is assumed: 

p = 1.0 (4) 

The velocity profile u = u(x,y) presents somewhat more of a problem. 

In the stagnation region, a shock layer solution [11] shows that the 
velocity profile was linear in the inviscid limit and varies as shown in 
Figure 14a. On the front face of the sabot component, similarity is assumed 
and the profile of Figure 14a is used; however, to account for the expansion 
at the corner and downstream of the corner, the profile is allowed to expand 
to the shape given in Figure 14b. This expansion of the profile is terminated 
2.5 calibers downstream of the corner because pressure data [9] on a free 
flying sabot component equilibrates to a constant surface value at that point. 
Subsequently, the profile shape is held constant. 

Equation (3) may now be solved  at  each  "x"  location for  a  stand-off 
distance.   To  insure  a unique  solution, the entire flow field is globally 
iterated upon until Mach number one is achieved at the sabot corner.  A sabot 
component  and the computed shock shape are shown in Figure 15a for a = 18° 
and Mach number 4.5. 

11.     P.  Plostins and S.  G.  Rubin,   "The Axisyrmetvio Stagnation Region Full 
Shook Layer for Large Rates of Injeotton, "    Journal of Nurnerioal 
Heat Transfer,   Vol.   4,   1981,  pp 368-375. 
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The projectile is a 15-degree cone-cylinder. Conical flow exists on the 
forebody up to the cone-cylinder junction. The conical solution [12] is used 
to initiate an axisymmetric method of characteristics solution which 
determines the flow field on the cylinder and the shock shape. It is a 
standard technique. No further explanation is needed except to say entropy 
effects were not included since only the shock shape and the projectile 
surface pressure distribution were of interest. The projectile free flight 
shock shape and surface pressure distribution are given in Figures 15b and 
15c. 

The two generated shock shapes are now used to locate the intersection 
point at which the sabot bow shock meets the projectile shock. At the 
intersection point, the strengths of the two shocks are known and a locally 
2-D shock expansion procedure is used to propagate the sabot shock through the 
projectile flow field to the wall of the projectile, establishing the shock 
impact location and the over-pressure ratio. An example of the computed wave 
pattern and the projectile pressure distribution is given in Figure 16 for a 
two caliber separation, a sabot angle of attack of 18 degrees and a Mach 
number of 4.5. A comparision of calculated impact locations and peak 
overpressures to data are given in Figure 17a and 17b for various sabot 
separations. 

The curves obtained follow the trend of the data correctly both for impact 
location and overpressure ratio. The absolute value of either parameter is 
inaccurately predicted. Several reasons for this discrepancy can be cited. 
One, the sabot component is 3-D and a 2-D analysis is used to predict the 
shock shape. Geometrically parts of the sabot component are closer to the 
projectile than the 2-D projection. This would tend to move the computed 
shock impact location forward on the projectile. Secondly, a 3-D shock is 
generally weaker than its 2-D counterpart and should therefore reduce the 
predicted overpressure levels. To improve the treatment, a 3-D shock fitting 
technique is under development. 

V.  DISCARD STRATEGY 

Typical sabot designs employ leading edge chamfer or scoops to provide 
aerodynamic loadings which implement discard. The sabot motion combines both 
pitch and lateral displacement of the center of gravity relative to the 
projectile. A simplistic grouping of discard motion is possible (Figure 18). 
The first category is essentially drag dominated in that the sabot pitches to 
high angle of attack and, as the drag force increases, moves aft relative to 
the projectile. While such a process is not necessarily bad, it can create 
strong aerodynamic interactions between the sabot and projectile if reasonable 
lateral separation is not achieved. As the sabot pitches to high angle of 
attack, it assumes the configuration of a large, blunt body with associated 
strong shocks. 

12,    J.  Sims,   "Supersonic Flow Around Right Cireular Cones," Army Ballistic 
Missile Agency,  Redstone Arsenal, AL,  DA-TR-11-60,  Mar 1980. 
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The other discard group can be described as lift dominated (Figure 18b). 
In this case, the sabot pitches to a moderate angle of attack where it 
stabilizes in pitch and moves laterally away from the projectile under the 
action of the lift force. There are two advantages to this process. First, 
the sweepback angle of hypersonic shock waves is large; therefore, a given 
vertical displacement of the sabot results in a larger aft movement of the 
shock impingement point on the projectile. Second, at a moderate angle of 
attack, the advantages of sabot pitch in decreasing shock strength (Figure 11) 
are optimized. 

A sample calculation of the duration of shock impingement on the 
projectile demonstrates these points. Postulating two sabot components 
starting from identical locations at zero velocity relative to the projectile 
and assuming that the shock is swept aft at the Mach angle in each case for 
the complete discard process, the interaction times are calculated to be 1.4 
ms for the drag dominated case and 0.9 ms for the lift dominated case. The 
decreased interaction time coupled to lower pressure levels would seem to 
promote lifting type discard as a desirable design goal. 

A firing program was conducted with two similar sabot designs; however, 
fins on the aft of the one sabot design provide trim stabilization and 
thereby implement a lifting discard. The discard trajectories were observed 
using orthogonal flash radiographs (Figure 19). As is observed, the standard 
sabot design follows a typical drag dominated discard. On the other hand, the 
inclusion of fins modifies this behavior providing lifting discard. While the 
tests demonstrated that sabot component trajectories can be controlled, 
subsequent firings were not convincing regarding the anticipated improvement 
in accuracy. Essentially no change was observed. This was primarily due to 
the alteration of in-bore behavior due to the stiffening of the aft of the 
sabot segment by the fins. As a result, the ability of the rear ramp to clamp 
about projectile and seal against propellant gases was degraded. The finned 
sabots were observed to exhibit signs of gas blow-by which were not present in 
the standard design. 

VI.  SUMMARY AND CONCLUSIONS 

Results of wind tunnel tests to examine the interference aerodynamics 
between asymmetrically discarding sabot components and the flight body are 
presented. The basic features of the flow field are similar to those 
previously observed in tests of symmetric discard. The test results indicate 
that the projectile surface pressure distribution is dominated by the facing 
sabot component. Adjacent components do not provide significant reinforcement 
of the impinging shock waves. While adjacent components do influence the 
separated flow ahead of the shock impingement, the resulting pressure 
distribution is largely uniform in the axial and azimuthal direction. Thus, 
no significant side forces are developed. These results indicate that the 
asymmetric sabot discard problem can be approximated by solving for the 
flow field associated with one sabot component. This solution may then be 
applied locally to determine the interaction with the facing section of the 
projectile surface, thus avoiding a complex multibody  solution. 

16 



Comparison with two-dimensional models of the interaction process shows 
that while trends in the data are qualitatively reproduced, there is 
disagreement between measured and predicted surface pressure distributions. 
To improve the prediction of the interactions, a 3-D model of the sabot 
component flow field is being developed. 

The experiment treats only a 120-degree segment of the flow. No fin 
interactions are considered. Additionally, the tests were conducted at a 
Reynolds Number significantly below flight values. To obtain a more complete 
description of the flow, additional wind tunnel tests axe  planned. 
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FIG.(3) SCHEMATIC OF A PLANE SHOCK INTERSECTING A CYLINDER 

FIG.(4a) PROJECTILE WITH THREE SABOT 
COMPONENTS MOUNTED IN WIND 
TUNNEL 

FIG.(4b) PROJECTILE WITH SABOT AND 
SPLITTER PLATES MOUNTED IN 
WIND TUNNEL 
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FIG.(7) PROJECTILE PRESSURE DISTRIBUTION WITH THREE SABOT COMPONENTS 
INSTALLED, ONE OF WHICH IS BEING TRAVERSED FORWARD 
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LIST OF SYMBOLS 

d   Projectile Diameter 
h   defined in equation (1b-c) 
m   Mass Flux 
M   Mach Number 
p,P ... Pressure 
Re .... Reynolds Number 
t   Time 
T   Temperature 
u   Tangential Velocity 
v ..... Normal Velocity 
V   Freestream Velocity 
x   Tangential Coor. or Projectile Axis 
Ax .... Sabot Forward Movement 
y   Normal Coordinate 
Ay .... Sabot Lateral Movement 

GREEK SYMBOLS 

a   Angle of Attack 
3    Non-Dim. Normal Coordinate 
A   Standoff Distance 
<{>   Transverse Coordinate 
P    Density 

SUBSCRIPTS 

ff .... Front Face 
s   Stagnation or Shock Value 
00  Freestream Conditions 

SUPERSCRIPTS 

• • • • Non-Dim. with Freestream Values 
Non-Dim. with Shock Values 
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